G* =  = OPERADOR QUÂNTICO DE GRACELI.


    EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 


 { -1 / G* =   / T] /  c} =

G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..



    /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 




Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]

Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.

Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]

O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.

 ,   /     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]





Em Teoria de Lieteoria de operadores e teoria matricial, a fórmula de Baker-Campbell-Hausdorff descreve a exponenciação de elementos de uma álgebra de Lie que não necessariamente comutam:


    /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  =


onde  é o comutador da álgebra, e os termos posteriores são todos comutadores de comutadores.




Postulados da mecânica quântica[editar | editar código-fonte]

Na Mecânica Clássica a descrição de um sistema físico é resumida da seguinte forma:

  • O estado físico do sistema em um dado tempo t0 é descrito por especificando-se as  coordenadas generalizadas  e seus momentos conjugados .
  • O valor dessas grandezas físicas em um dado tempo é completamente determinado se o estado desse sistema neste tempo é conhecido. Ou seja, se o estado do sistema é conhecido podemos determinar com exatidão o estado posterior do sistema após a medida feita em .
  • A evolução no estado do sistema é dado pelas leis de Newton ou por formulações equivalentes (mecânica lagrangiana ou hamiltoniana). O estado do sistema fica completamente determinado se conhecemos suas condições iniciais.

A mecânica quântica pode ser formulada a partir de diversos conjuntos de postulados e de diversos formalismos matemáticos. Seguem os postulados que fazem uso da análise funcional e que são adotados por considerável parte de textos básicos de mecânica quântica.[2]

  • Todo sistema físico está associado a um espaço de Hilbert H complexo e separável, sendo o produto interno de H definido por . A todo estado físico associa-se um conjunto de vetores unitários de H que diferem apenas por uma fase complexa.
  • Os resultados possíveis em uma medida de um observável correspondem ao espectro do observável correspondente.
  • Seja A um observável físico com espectro discreto . Quando é realizada uma medida em A, a probabilidade  de encontrar o autovalor  é dada por

    /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  =

onde  é o grau de degenerescência de  e  correspondem aos autovetores de A com autovalor .

  • Se em uma medida de uma grandeza física  no estado  encontramos um autovalor  de , imediatamente após a medida o estado do sistema será a projeção normalizada de  no auto-espaço associado a . Dessa forma, toda medida imediatamente após a primeira medida terá o mesmo resultado.
  • A evolução no tempo  do vetor de estado de um sistema físico é governada pela equação de Schrödinger, desde que o sistema físico mantenha coerência
 

    /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  =

onde H é o Hamiltoniano do sistema e  é a constante reduzida de Planck.

  • O Postulado da simetrização nos diz que quando um sistema possui várias partículas idênticas somente alguns kets do espaço dos estados podem descrever um sistema físico. Estes kets são, dependendo da natureza das partículas, completamente simétricos ou completamente assimétricos com respeito à permutação das partículas. Partículas que possuem vetores de estado simétricos são chamadas de bósons enquanto que as que possuem vetores de estado assimétrico são chamadas de férmions.




Interpretação estatística de Born

Na interpretação de Max Born, o quadrado da função de onda, é interpretado como a densidade de probabilidade de encontrar a partícula na posição x em determinado tempo [8], por isso, a probabilidade de a medição da posição da partícula dar um valor no intervalo  é

    /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  =

Isto leva à condição de normalização

    /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  =

já que a medição da posição de uma partícula deve resultar em um número real.


Esse pensamento sendo associado com a Interpretação de Copenhague que foi feita pelo próprio Niels Bohr e Werner Heisenberg, define que não é possível determinar exatamente a posição da partícula, é possível somente determinar a probabilidade estatística, sendo assim, neste caso é entendida como um dado considerado inquestionável já que "Não faz sentido especular para além daquilo que pode ser medido".[9]






Na teoria quântica de campos, as distribuições de Wightman podem ser analiticamente continua a funções analíticas em espaço euclidiano com o domínio restrito ao conjunto ordenado de pontos no espaço euclidiano sem pontos coincidentes. Essas funções são chamadas as funções Schwinger, em homenagem a Julian Schwinger. São funções analíticas, simétricas sob a permutação de argumentos[1] (antisimétrico para campos fermiônicos[2][3]) euclidianos covariante e satisfazem uma propriedade conhecida como positividade de reflexão.

Escolha qualquer coordenada arbitrária τ e escolha uma função de teste fN em um conjunto com N pontos como seus argumentos. Suponha que fN tem o seu apoio no subconjunto de tempo-ordenado de N pontos com 0 < τ1 < ... < τN. Selecione uma fN tal que para cada N positivo, com os f sendo zero para todos os N maiores do que algum número inteiro M. Dado um ponto x, seja o ponto refletido acerca do hiperplano τ = 0. Então,

    /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  =

onde * representa a conjugação complexa.[4]

teorema de Osterwalder-Schrader afirma que as funções Schwinger que satisfazem essas propriedades podem ser analiticamente continuas dentro de uma teoria quântica de campos.[5] A integração de funcionais euclidianas satisfaz formalmente a reflexão de positividade[6][7]. Escolha qualquer polinômio funcional F do campo φ, que não depende do valor de φ(x) para os pontos x cujas coordenadas τ são não positivas. Então,

    /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  =

Uma vez que a ação S é real e pode ser dividida em S+, que só depende de φ no semi-espaço positivo[8] e S que só depende de φ no semi-espaço negativo[9] e se S também acontece ser invariante sob a ação combinada de tomada de uma reflexão e conjugando complexo todos os campos; então, a quantidade precedente tem de ser não negativa.[10].

Comentários

Postagens mais visitadas deste blog